An Enhanced k-means algorithm to improve the Efficiency Using Normal Distribution Data Points
نویسندگان
چکیده
Clustering is one of the unsupervised learning method in which a set of essentials is separated into uniform groups. The k-means method is one of the most widely used clustering techniques for various applications. This paper proposes a method for making the K-means algorithm more effective and efficient; so as to get better clustering with reduced complexity. In this research, the most representative algorithms K-Means and the Enhanced K-means were examined and analyzed based on their basic approach. The best algorithm was found out based on their performance using Normal Distribution data points. The accuracy of the algorithm was investigated during different execution of the program on the input data points. The elapsed time taken by proposed enhanced k-means is less than k-means algorithm. KeywordsData clustering, k-means, Enhanced k-means, cluster analysis
منابع مشابه
Proposing an approach to calculate headway intervals to improve bus fleet scheduling using a data mining algorithm
The growth of AVL (Automatic Vehicle Location) systems leads to huge amount of data about different parts of bus fleet (buses, stations, passenger, etc.) which is very useful to improve bus fleet efficiency. In addition, by processing fleet and passengers’ historical data it is possible to detect passenger’s behavioral patterns in different parts of the day and to use it in order to improve fle...
متن کاملA Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملMeasuring the efficiency of a three-stage network using data envelopment analysis approach considering dual boundary
This paper presents a method for performance evaluation, ranking and clustering based on the double-frontier view to analyze the complex networks. The model allows us to open the structure of the “black box” and can help to obtain important information about efficient and inefficient points of the system. In this paper, we consider a three-stage network, in respect to the additional desirable a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010